
Acc
ep

ted
 M

an
us

cri
pt

© Endocrine Society 2020. js.2020-00069 
https://academic.oup.com/endocrinesociety/pages/Author_Guidelines for Accepted Manuscript 
disclaimer and additional information. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution-
NonCommercial-NoDerivs licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits 
non-commercial reproduction and distribution of the work, in any medium, provided the original work is 
not altered or transformed in any way, and that the work is properly cited. For commercial re-use, 
please contact journals.permissions@oup.com 

A novel syndrome with short stature, mandibular hypoplasia and osteoporosis may be 

associated with a PRRT3 variant 

Abhimanyu Garg1, Hatem El-Shanti2, Chao Xing3, Zhengyang Zhou4, Mousa Abujbara5, 

Khadeja Al-Rashed5, Mohammed El-Khateeb5, Kamel Ajlouni5, Anil K. Agarwal1 

 

1From the Division of Nutrition and Metabolic Diseases, Department of Internal Medicine 

and the Center for Human Nutrition, UT Southwestern Medical Center, Dallas, Texas, 

USA.  

2The National Center for Diabetes, Endocrinology and Genetics, and Department of 

Pediatrics, Carver College  of Medicine, University of Iowa, Iowa City, IA, USA. 

3McDermott Center for Human Growth and Development, Department of Population and 

Data Sciences, and Department of Bioinformatics, UT Southwestern Medical Center, 

Dallas, Texas, USA. 

4Department of Biostatistics and Epidemiology, School of Public Health, University of 

North Texas Health Science Center, Fort Worth, Texas, USA. 

5The National Center for Diabetes, Endocrinology and Genetics, and School of 

Medicine, University of Jordan, Amman, Jordan. 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/jes/article-abstract/doi/10.1210/jendso/bvaa088/5868816 by guest on 09 July 2020



Acc
ep

ted
 M

an
us

cri
pt

2 
 

Key Words: PRRT3, progeroid syndrome, short stature, mandibular hypoplasia, growth 

hormone deficiency 

Correspondence and Reprint Requests:  

Abhimanyu Garg, M.D., Chief, Division of Nutrition and Metabolic Diseases, Department 

of Internal Medicine, UT Southwestern Medical Center, 5323 Harry Hines Blvd, K5.214, 

Dallas, TX 75390-8537. 

E-mail: abhimanyu.garg@utsouthwestern.edu 

Declaration of Interests: The authors declare no competing interests.   

Financial Support: This work was supported by grant from the National Institutes of 

Health, R01-DK105448 and by the Southwestern Medical Foundation. The funding 

sources were not involved in study design, analysis and interpretation of data, writing of 

the paper, and in the decision to submit the article for publication. 

Disclosure Summary: The authors have no financial relationships relevant to this 

article to disclose. 

Precis:  

A homozygous p.Glu394Lys variant in PRRT3 may be associated with a novel 

autosomal recessive, progeroid syndrome with short stature, mandibular hypoplasia, 

osteoporosis, short eyebrows and mild GH deficiency. 
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Abstract 

Context: Despite considerable progress in elucidating the molecular basis of various 

progeroid syndromes, some rare patients remain unexplained.  

Objective: To elucidate molecular genetic basis of a novel autosomal recessive 

progeroid syndrome. 

Participants: A 24-year-old male and his 18-year-old sister with short stature, mandibular 

hypoplasia, pointed nose, shrill voice, severe osteoporosis, and short eyebrows; and their 

unaffected siblings and parents belonging to a consanguineous Arab family.  

Results: Using exome and Sanger sequencing, we report a novel homozygous 

p.Glu394Lys disease-causing variant in proline rich transmembrane protein 3 (PRRT3). 

PRRT3 belongs to the family of proline-rich proteins containing several repeats of a short 

proline-rich sequence but its function remains to be determined. Preliminary observations 

showing co-localization of Prrt3 and synaptophysin support its role in vesicle exocytosis. 

Consistent with the highest mRNA expression of PRRT3 in the pituitary, both the patients 

had mild growth hormone deficiency but had near normal reproductive development.  

Conclusions: We conclude that the homozygous p.Glu394Lys variant in PRRT3 may 

be associated with a novel autosomal recessive, progeroid syndrome with short stature, 

mandibular hypoplasia, osteoporosis, short eyebrows and mild GH deficiency. Our 

findings extend the spectrum of progeroid syndromes and elucidate important functions 

of PRRT3 in human biology including secretion of growth hormone from the pituitary.  
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Introduction 

 

In the last two decades, considerable progress has been made in identifying the 

molecular genetic basis of several progeroid syndromes, including Werner’s syndrome 

(1), Hutchinson-Gilford progeria syndrome (2), atypical progeroid syndrome (3), 

mandibuloacral dysplasia (4, 5), mandibular hypoplasia, deafness and progeroid 

syndrome (6), and more recently, neonatal progeroid syndrome (7). These discoveries 

have revealed importance of several pathways in aging, such as those involved in the 

maintenance of nuclear membrane integrity by nuclear lamins A and C and in genomic 

stability by RECQ helicase enzymes and DNA/RNA polymerases, such as polymerase 

delta 1 catalytic subunit and polymerase (RNA) III Subunit A. Despite this progress, the 

molecular basis of some rare progeroid patients remains obscure. Here we report 

homozygous missense variant in PRRT3 as the molecular genetic basis of a novel 

autosomal recessive progeroid syndrome. 

 

Subjects and Methods 

We ascertained two affected siblings belonging to a consanguineous Arab 

pedigree. This study was reviewed and approved by the Institutional Review Board of UT 

Southwestern Medical Center, Dallas, Texas. Both the affected subjects, their parents, 

and unaffected siblings provided written informed consent for participation in the current 

study.  

Clinical features of the two affected subjects were as follows: 
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Patient J100.3:  This 24-year-old male had poor weight gain, short stature and 

muscle weakness since age 6. He developed puberty at age 17 but had a high-pitched 

voice. His height was 156 cm (2.2 percentile, z-score -2.0 using data from 

https://tall.life/height-percentile-calculator-age-country/ for adult males in Jordan). At age 

21, his body weight was 31.5 kg (Z score -8.5), body mass index (BMI) was 12.9 kg/m2 

(z score -9.5) and occipito-frontal circumference was 51.5 cm (z score -2.4) denoting 

microcephaly.  He had micrognathia, beaked nose, small mouth, loss of lateral eyebrows 

and high arched palate (Figure 1A-C). He had sloping shoulders, thin extremities, reduced 

muscle bulk and scanty subcutaneous fat. He had severe gingivitis and myopia.  He was 

Tanner stage IV but had no facial hair and scant axillary and pubic hair. He had some 

limitation of movement of full extension of the elbows, knees and hips. He also had a 

short right index finger and incurved third toes (Figure 1D, E).  

His fasting and two-hour post-prandial blood glucose values were normal (93 

mg/dL and 112 mg/dL, respectively). He had normal serum total cholesterol (149 mg/dL), 

triglycerides (39 mg/dL), and high-density lipoprotein (HDL) cholesterol (45 mg/dL). His 

serum calcium (9.5 mg/dL; normal range: 8.4-10.2 mg/dL), phosphorus (3.75 mg/dL; 

normal range: 2.7-4.5 mg/dL); magnesium (2.11 mg/dL; normal range: 1.7-2.56 mg/dL); 

and alkaline phosphatase (40.7 IU/L; normal range: 40-129 IU/L) were normal. His serum 

parathyroid hormone was elevated (111.5 pg/mL; normal range: 9-55 pg/mL) and 25 

hydroxy-vitamin D level was low (12.3 ng/mL; normal range: 30-70 ng/mL). He had normal 

serum adrenocorticotrophic hormone (ACTH: 28.1 pg/mL; normal range: 7.2-63 pg/mL), 

cortisol (15.7 µg/dL; normal range: 3.7-19.4 µg/dl); thyroid stimulating hormone (TSH: 

2.12 µIU/mL; normal range: 0.35-5.01 µIU/mL); free thyroxine (9.87 pmol/L; normal range: 
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9.10-23.80 pmol/L); luteinizing hormone (LH: 3.25 mIU/mL; normal range: 1.14-8.75 

mIU/mL), follicle stimulating hormone (FSH: 3.68 mIU/mL; normal range: 0.95-11.95 

mIU/mL) and testosterone (3.22 ng/mL; normal range: 2.41-8.27 ng/mL) concentrations. 

His serum growth hormone (GH) was 1.35 ng/mL (normal values: 0.4-2.47 ng/mL) but 

insulin-like growth factor-1 (IGF-1) concentration repeated twice were 73.6 and 76.5 

ng/mL (-3.33 SD; normal range: 99-655 ng/mL), and were extremely low. A 240-minute 1 

mg intramuscular glucagon (GlucaGen, Novo Nordisk) stimulation test at age 24 years 

revealed peak stimulated serum GH concentration of 3.23 ng/mL at 120 minutes from the 

baseline value of 0.51 ng/mL. 

Roentgenograms of the wrist revealed bone age corresponding to the 

chronological age of 20 years. A dual-energy X-ray absorptiometry (DEXA; Hologic 

Discovery A; Hologic, Inc., Waltham, MA) revealed an overall Z score of -4.78 (height 

adjusted Z score according to Zemel et al. (8), -2.6), lumbar 1-4 vertebral Z score of -4.6 

(height adjusted, -2.8), and left femoral neck Z score of -4.5 (height adjusted, -3.4). There 

was no history of bone fractures. His total body fat was 24.4%, with arm fat of 21.4%, leg 

fat of 27.6% and truncal fat of 22.9%. Whole body magnetic resonance imaging revealed 

near normal body fat distribution (Figure 1F-I). Echocardiography showed trace mitral 

valve regurgitation. Audiometry showed moderate bilateral high frequency (8000 Hz) 

sensorineural hearing loss (Figure 1J). 

He died recently due to suspected food poisoning after presenting to the local hospital with 

vomiting and dehydration. The clinical or laboratory data for this admission are not available.  
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His parents were first cousins (Figure 2A). The mid-parental height was 172 cm. 

One of his younger sisters was similarly affected and he had four younger healthy sisters 

and one healthy brother, all of whom were of average height and weight (Figure 2A).  

 

Patient J100.5:  This 18-year-old girl had developmental dysplasia of the hips 

requiring surgery at 7 and 12 months of age. At the age of five years, poor weight gain, 

short stature and muscle weakness were noted. She achieved menarche at 12 years and 

had irregular menstrual cycles. She had a high-pitched voice. Her height was 149 cm (1.2 

percentile; z score -2.3), weight was 29.5 kg (z score -3.8) with a BMI of 13.3 kg/m2 (z 

score -5.0) and occipito-frontal circumference was 50.5 cm (z score -3.6) denoting 

microcephaly. She had micrognathia, beaked nose, small mouth, loss of lateral eyebrows 

and high arched palate. She had thin and slender extremities, reduced muscle bulk, and 

scanty subcutaneous fat. Her breast and pubic hair development were Tanner stage III 

but she had scant axillary hair.  

Her fasting blood glucose was 94 mg/dL and two-hour post-prandial blood glucose 

was 89 mg/dL. She had normal serum total cholesterol (163 mg/dL), triglycerides (48 

mg/dL), HDL cholesterol (60 mg/dL), serum calcium (9.3 mg/dL), phosphorus (3.9 mg/dL), 

magnesium (1.99 mg/dL), alkaline phosphatase (40.6 IU/L), TSH (1.62 µIU/mL), free 

thyroxine (9.52 pmol/L), ACTH (24.5 pg/mL), cortisol (18.5 µg/dL), LH  (3.36 mIU/mL; 

normal range: 1.6-12.4 mIU/mL), FSH (3.3 mIU/mL; normal range Mid-follicular phase: 

2.5-10.2 mIU/mL) and estradiol levels (113.4 pg/mL;  normal range Mid-follicular phase: 

27-123 pg/mL). Her serum parathyroid hormone level was high (81.7 pg/mL) and 25 

hydroxy-vitamin D level was low (8.5 ng/mL). Her serum GH level was 1.96 ng/mL (normal 
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values 1-8 ng/mL) but IGF-1 levels repeated twice were 46.6 and 46.7 ng/mL (-3.51 SD; 

normal range: 73-522 ng/mL), and were extremely low. A 240-minute 1 mg intramuscular 

glucagon (GlucaGen, Novo Nordisk) stimulation test at age 18 years revealed peak 

stimulated serum GH level of 3.83 ng/mL at 120 minutes from the baseline level of 1.37 

ng/mL. 

She had normal hearing on audiometry and normal echocardiogram. Her bone age 

corresponded to the chronological age of 16 years. A DEXA revealed an overall Z score 

of -3.2 (height-adjusted, -2.25), lumbar 1-4 vertebral Z score of -2.3 (height-adjusted, -

1.5), left femoral neck Z score of -3.4 (height-adjusted, -2.9). There was no history of bone 

fractures. Her total body fat was 32.7%, with arm fat of 32.6%, leg fat of 43% and truncal 

fat of 26.6%. Her whole-body MRI revealed near normal subcutaneous and intra-

abdominal fat. Follow up at age 18 years revealed that she had developed a seizure 

disorder, which was controlled by medications. 

 

Methods 

Genotyping: Genomic DNA was isolated from peripheral blood using the Easy-DNA kit 

(Invitrogen, Carlsbad, CA). Two affected (J100.3 and J100.5) and two unaffected (J100.4, 

J100.8) subjects (Figure 2A) underwent whole exome sequencing using the SureSelect 

Human All Exon V4 kit on the Illumina platform. Sequencing read length was paired-end 

2x100 bp. Sequences were aligned to the human reference genome b37. The mean 

coverage of the targeted regions for J100.3, J100.4, J100.5, and J100.8 were 99, 95, 126, 

and 88-fold, respectively, with >98% bases covered by >10-fold reads in all samples. 

Genetic variations were called using the Genome Analysis Toolkit (9) and annotated 
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using SnpEff (10). Because of parental consanguinity and 2 of the 7 siblings being 

affected, we hypothesized a homozygous variant was most likely. Thus, we mapped the 

disease gene by a combination of two approaches. First, we first searched for runs of 

homozygosity (ROH) greater than 1 MB and shared by the two affected but not by the 

two unaffected using BCFtools/RoH (11). Second, we filtered for rare missense, 

nonsense, splicing, or frameshift homozygous variants shared by the two affected but not 

by the two unaffected with minor allele frequency (MAF) less than 0.01 in the 1000 

Genomes Project (http://www.internationalgenome.org/), genome aggregation database 

(gnomAD v2.1.1; http://gnomad.broadinstitute.org/), and the Greater Middle East (GME) 

Variome Project database (http://igm.ucsd.edu/gme/). Variants with  Genomic 

Evolutionary Rate Profiling (GERP)++ score (12) greater than 1.0 and Combined 

Annotation Dependent Depletion (CADD) score (13) greater than 10 were considered. 

We considered missense variants predicted to be “probably damaging” by Polymorphism 

Phenotyping v2 (PolyPhen2, HumDiv; http://genetics.bwh.harvard.edu/pph2/). We also 

performed Sanger sequencing to confirm segregation of the candidate variants within the 

pedigree. 

 

mRNA Expression Studies: In order to study the tissue expression of PRRT3 mRNA, 

we designed primers in both the 5’ and 3’ regions of the gene specific to PRRT3. The 

human normal cDNA tissue array was obtained from Origene (TissueScan, Rockville, 

MD).   

 

Results  
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The ROH analysis revealed a total of 22.1 Mb stretches of homozygous segments 

consisting of 5 regions greater than 1 Mb in length, which were shared by the two affected 

siblings but not by the two unaffected siblings. Out of the 5 regions, there was one 

significant ROH on chromosome 3 spanning ~15.7 Mb (9,896,351 – 25,632,113) (Figure 

2B). There was no indication of copy number variation in the region according to 

ExomeDepth (14). There were only two candidate variants with minor allele frequency < 

0.01 in the ROH: the PRRT3 variant on chromosome 3 and a GPR110 variant on 

chromosome 6. The GPR110 variant had a low PolyPhen score of 0.618, which failed the 

PolyPhen criterion, and furthermore, upon Sanger sequencing of all the family members, 

it did not segregate with the phenotype in our family. The unaffected mother was 

homozygous for the GPR110 variant. The PRRT3  homozygous variant, 

NC_000003.11:g.9989677C>T leading to a c.1180G>A nucleotide change and 

corresponding protein change, NP_997234.4: p.Glu394Lys, passed the filtering criteria 

(Figure 2). This variant (rs909458664) was not seen in gnomAD or GME; however, there 

were 3 heterozygotes among 62,784 individuals in TOPMed database freeze5 

(https://bravo.sph.umich.edu/freeze5/hg38/). Sanger sequencing further confirmed the 

segregation of this variant in the family (Figure 2A, B). No pathogenic variants were found 

in either of the affected subjects in progeria or progeroid syndrome genes, such as, 

LMNA, ZMPSTE24, BANF1, RECQL2, RECQL4, BLM, POLD1, POLR3A, WRN, ERCC4, 

ERCC6, ERCC8, TERT1, TERC, DKC1, AKT1P, SPRTN,  XPA, XPB, XPC, and XPG 

(15). 

PRRT3 belongs to the family of proline-rich proteins containing several repeats of 

a short proline-rich sequence. PRRT3 has close homology with PRRT1, PRRT2 and 
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PRRT4, which are much smaller proteins (Figure 3A). However, the precise molecular 

function of PRRT3 remains to be determined. The central region of all PRRT proteins 

seems to be highly conserved which may suggest similar functions of these proteins. 

Recently, variants in PRRT2 have been reported to cause episodic kinesigenic 

dyskinesia-1 (16). The glutamic acid at position 394 of PRRT3 is highly conserved across 

species (Figure 3B).  

RNA expression studies using the primers in both the 5’ and 3’ regions of the gene 

specific to PRRT3 (Fig. 3A) revealed the highest relative expression in the pituitary, 

followed by muscle, pancreas, rectum and tonsil (Figure 3C). Other tissues, including the 

brain, showed low level of expression (Ct value ≥ 30)(Supplementary Table 1)(17).   

Based on the secondary structure prediction of the human PRRT3-long form, we 

show the possible protein insertion in the membrane (Figure 3D) with the amino-terminus 

being intracellular while carboxy-terminus is extracellular. The variant p.E394K is in the 

coiled-coil region of the long isoform, near the cell membrane, but does not affect the 

short isoform (Figure 3E).  

 

Discussion: 

Given the strong conservation of PRRT3 to other proteins of the PRRT family, 

some functional clues can be derived. Just like PRRT2, PRRT3 could also be involved in 

exocytosis, transporting intracellular molecules to cell exterior on demand (18, 19). 

Preliminary observations showing co-localization of Prrt3 and synaptophysin (20) support 

its role in vesicle exocytosis in pituitary cells as well as in neurons (21). Preliminary 

phenotyping of the homozygous Prrt3 knock out mice, with deletion of the entire Prrt3 
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affecting the expression of both the isoforms, revealed small size and high mortality 

before 7 days of age (22).  These observations suggest a critical role of PRRT3 in 

neurobiology and in sustaining life after birth. However, our patients, with a unique PRRT3 

homozygous missense variant, which likely affects the function of the long isoform 

partially, had milder phenotype than the knock out mice.  

Our patients had several unique clinical features suggestive of progeroid 

syndrome, including short stature, microcephaly, mandibular hypoplasia, pointed nose, 

shrill voice, severe osteoporosis and loss of hair from eyebrows. According to Biller et al. 

(23), a baseline serum IGF-1 level < 2 SD score, or < 77 ng/mL has a 100% specificity 

and 46% sensitivity for diagnosis of GH deficiency. In both our patients, serum IGF-1 

levels were below 3 SD score and < 77 ng/mL, thus diagnostic of GH deficiency. Low 

serum IGF-1 levels in our patients are unlikely to be due to malnutrition as there was no 

evidence of malnutrition in the affected patients who had normal levels of serum protein, 

albumin and lipids. The low BMI in our patients were part of the novel autosomal recessive 

syndrome. Furthermore, both the patients had low serum GH response on glucagon 

stimulation test, especially considering that they received a fixed dose of 1 mg of glucagon 

despite their low body weights of 31 kg and 29.3 kg, suggesting mild GH deficiency (24, 

25). The expression of PRRT3 mRNA is also observed in the mouse inner ear hair cells 

(26) and may explain high frequency hearing loss in the proband. However, patient J100.5 

did not have hearing loss.  Both the patients had vitamin D deficiency and secondary 

hyperparathyroidism, which along with mild GH deficiency may be contributing to 

osteoporosis and short stature. Interestingly, despite mild GH deficiency, the bone age 

was not delayed in either of the affected subjects. 
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Each of the previously reported progeroid syndromes displays only a subset of the 

features of normal aging (27-30). In many patients, accelerated aging, driven by genetic 

variants, begins early in childhood resulting in profound growth retardation and poor 

sexual development. The sexual development of our patients appears near normal but 

the male had no facial hair and the female had irregular menstrual cycles. Both of them 

had normal serum gonadotropin levels, and the male had normal testosterone and the 

female had normal estradiol levels. The reproductive capabilities of our patients are not 

known. Although physical examination suggested scant subcutaneous fat in the 

extremities of both our patients, the objective evaluation of regional body fat by DEXA 

scans and whole-body magnetic resonance imaging did not support a lipodystrophic 

phenotype.  

One limitation of the current study is that there is only one nuclear family available. 

Moreover, the function of PRRT3 is largely unknown and there is no human disorder 

reported to be associated with it yet. As such, the p.Glu394Lys variant is only classified 

as of uncertain significance by the American College of Medical Genetics and Genomics 

and the Association for Molecular Pathology guidelines (31). It meets the criterion of 

absence in population databases (PM2), but the in silico predictions are conflicting. It is 

well conserved (GERP++ = 4.89), predicted to be probably damaging by some algorithms 

(CADD = 25.2; PolyPhen = 0.994) but likely benign by other algorithms (SIFT = 0.071; 

REVEL = 0.095). However, its co-segregation with phenotype constitutes a moderate 

evidence of being pathogenic. The genotype-phenotype co-segregation probability 

proposed by Jarvik and Browning (32) can be calculated as 𝑁 = (1 4⁄ ) × (3 4⁄ )5 and is <

1 16⁄ , where the first and second factors correspond to the affected and unaffected, 
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respectively. Based on the Clinical Genome Resource classification method (33), the 

strength of evidence is “limited” with ~2 points from the genetic evidence. Identification of 

a second family with similar phenotype caused by biallelic variants in PRRT3 would 

confirm our discovery and shed more light on the function of the gene. We have made a 

submission (ID:50378) to GeneMatcher (34) but so far, have not found any other pedigree 

with PRRT3 biallelic variants.  

Another limitation is that we only performed whole exome instead of whole-

genome sequencing. There is always a likelihood that the disease-causing variant lies in 

the non-coding regions. Moreover, there can be multiple genetic causes of underlying 

complex phenotypes such as progeria, particularly in a consanguineous pedigree where 

there are long stretches of homozygous regions in the affected. In the current study, we 

manually checked that there was no pathogenic variant in the progeroid syndrome genes 

(15) in either of the affected subjects and none of the causal genes lied in a homozygous 

region shared by the two affected but heterozygous in the unaffected.  

We conclude that the homozygous p.Glu394Lys variant in PRRT3 may be 

associated with a novel autosomal recessive, progeroid syndrome with short stature, 

mandibular hypoplasia, osteoporosis, short eyebrows and mild GH deficiency. Our report 

extends the spectrum of progeroid syndromes and elucidates important functions of 

PRRT3 in human biology including secretion of GH from the pituitary.  
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Figure Legends:  

  

Figure 1. Clinical features of Patient 1 (J100.3) with short stature, mandibular hypoplasia, 

osteoporosis and short eyebrows progeroid syndrome. Anterior (A), and left lateral (B) 

views of the Patient 1 (at age 18) showing thin limbs with a paucity of subcutaneous (sc) 

fat on the trunk and extremities with normal hair on the scalp but lack of facial and body 

hair. C. Anterior view of the face of Patient 2 (J100.5) showing small mandible, beaked 

nose, and loss of lateral third of the eyebrows. D. Posterior view of Patient 2 showing thin 

limbs with paucity of subcutaneous fat on the extremities. E. Anterior view of the face of 

Patient 1 showing small mandible, beaked nose, and loss of lateral third of the eyebrows 

and lack of facial hair on the upper lip, chin and cheeks. F. Dorsal view of the right hand 

of Patient 1 showing short index finger. G. Dorsal view of the right foot of Patient 1 

showing incurved third toe. H. Sagittal MRI of the head and neck through midline of 

Patient 1 shows normal amount of sc fat in the scalp, neck and upper chest. I. Axial MRI 

of the chest at the level of the base of the heart of Patient 1 showing normal sc fat 

anteriorly and posteriorly. J. Axial MRI of the mid-thigh of Patient 1 showing normal 

amount of sc and intermuscular fat. K. Axial MRI of the abdomen at the level of the 

kidneys of Patient 1 showing normal amount of fat in the sc, intraperitoneal, and 

retroperitoneal (perinephric) region. L. Audiometry of Patient 1 showing moderate high 

frequency (8,000 Hz) hearing loss in both the ears. Hearing level below 20 dB at a 

frequency is considered hearing loss.   
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Figure 2. J100 Pedigree and the pathogenic variant in PRRT3. A. J100 pedigree. The 

circles denote females and squares males. Subjects with homozygous c.1180G>A 

PRRT3 variant are shown as A/A; heterozygotes as G/A; with the wild type alleles as 

G/G under the symbols. Symbols filled with black color indicate affected subjects with 

progeroid syndrome, and unfilled symbols indicate unaffected subjects. A slanted arrow 

indicates the proband, and asterisks indicate subjects who underwent whole exome 

sequencing. Double horizontal line indicate consanguinity among parents (first cousins). 

Data are also included for height, weight, body mass index (BMI) and occipital-frontal 

circumference (OFC) for each participant. For the children and proband (assuming his 

age to be 19.9 years), z-scores were calculated from the CDC data 

(https://www.cdc.gov/growthcharts/percentile_data_files.htm.). For the adults, z-score 

for height was calculated from https://tall.life/height-percentile-calculator-age-country/. 

B. Region of homozygosity on chromosome 3 spanning ~15.7 Mb (9,896,351 – 

25,632,113 bp), shared by the two affected individuals (J100.3 and J100.5) but not by 

the two unaffected subjects (J100.4 and J100.8). The top line represents the markers 

with alternate homozygous genotypes; the bottom line corresponds to the heterozygous 

genotypes. The rectangles highlight the homozygous regions— red if the regions are 

shared by more than one subject, grey if the regions are private to one subject. C. The 

human PRRT3 gene contains four exons and three introns. The hatched boxes indicate 

untranslated regions. The arrow indicates the direction of the coding transcript. The 

variant g.9989677C>T; c.1180G>A is present in exon 4 of the PRRT3. D. Sequence 

electropherogram from Sanger sequencing of PRRT3 showing wild type sequence E. 
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Heterozygous c.1180G>A (p.Glu394Lys) PRRT3 variant in an unaffected subject and  

F. Homozygous c.1180G>A (p.Glu394Lys) PRRT3 variant in an affected subject. 

 

Figure 3. Alignment of various PRRT proteins, conservation of the mutated glutamic acid 

across species, tissue expression of PRRT3 mRNA and schematic of the predicted 

human PRRT3 isoforms insertion in the cell membrane. A. Snapshot of the protein 

alignment of PRRT 1-4 using NCBI COBALT multiple alignment tool.  The highly 

conserved regions for these isoforms are shown in red. The conserved region spans 

between amino acids 216-461 of PRRT3.  The primers used for RT-qPCR were designed 

in the 5’ and 3’ region of the gene so that they specifically amplify PRRT3.  The amplified 

product using these primer sets were confirmed by Sanger sequencing. GenBank Acc#; 

PRRT1 - NM_030651.3 → NP_085154.3; PRRT2 – NM_145239.2 → NP_660282.2; 

PRRT3 – NM_207351.4 → NP_997234.3; PRRT4 – NM_001114726.2 → 

NP_001108198.2. B. Alignment of partial PRRT3 amino acid sequences from the human 

(H. Sapiens; NP_997234.3), chimpanzee (P. troglodytes; XP_001149591.1), rhesus 

monkey (M. mulatta; XP_001091855.1), gray wolf (C. lupus, XP_005632236.1), cow (B. 

Taurus; XP_005222668.1), mouse (M. musculus; NP_766075.2), and rat (R. norvegicus; 

XP_003749857.1). The mutated residue glutamic acid (E) at position 394 (shown in red 

in bold font) is conserved amongst all the species. C. Expression of human PRRT3 mRNA 

in various tissues.  Shown are the tissues whose Ct values were below 30 for both 5’ and 

3’ region primer sets. The relative expression of each tissue is compared to that of tonsil. 

Expression in the pituitary is 5 to 13 fold higher than that in the tonsil. D and E. Schematic 

for the human PRRT3 isoforms insertion in the plasma membrane based on secondary 
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structure prediction. PRRT3 encodes a 981 amino acid protein (long-form) and a 421 

amino acid protein (short-form). Both the isoforms share 390 amino-terminal amino acids 

and the long form has 591 unique carboxy-terminal amino acids and the short form has 

31 unique carboxy-terminal amino acids. The modeling was performed using secondary 

structure prediction for human PRRT3 protein and a recent biochemical approach used 

for PRRT2 protein membrane insertion (35). The variant p.E394K (shown with a red X) 

resides in the intracellular part of PRRT3 and does not affect the short form.  
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