Prevalence of Congenital Adrenal Hyperplasia (CAH) due to 21-hydroxylase deficiency, in a Jordanian sample pool

Dagag Hindia, Batayneh Asmaa’, Al-Khawaja Nahla, Fatallah Rajaa’, Al-Masri Maia, Abu-Khushabeh Razan, El-Khateeb Mohammed and Ajlouni Kamel
National Center for Diabetes, Endocrinology and Genetics (NCDEG), Amman, Jordan.
hinda.dagag@ncd.org.jo

Abstract

The main aim of the current study was to screen the Jordanian population for the 8 most common CYP21A2 mutations and introduce a prenatal and a neonatal genetic test for CAH in Jordan. Similar mutational analyses studies have been performed in other Arab countries such as Tunisia and Iran, however, this is the first comprehensive study of its kind, performed on the Jordanian population. Our sample pool consisted of 46 clinically diagnosed index patients, including 22 males and 24 females. In most cases, DNA samples for family members were also available, bringing the total number of samples up to 170. Different experimental methodologies have been implemented in this study including ARMS, MLPA and sequencing. Preliminary results suggest a unique allelic spread of the most common CYP21A2 mutations within a Jordanian sample pool.

Introduction

CAH represents a family of autosomal recessive disorders. About 95% of CAH cases are caused by 21-hydroxylase deficiency, resulting from a defect in the cytochrome P450, family 21, subfamily A, polypeptide 2 (CYP21A2) gene (1). Two different forms of CAH exist, the classic form, which is the severe form and is further subdivided into simple virilizing and salt wasting depending on whether the sodium levels in the patient are abnormal or not. 75% of classic CAH cases are salt-wasting. Non-classic CAH is a milder form and patients are either asymptomatic or show mild signs of androgen excess. It is important to note that CYP21A2 has an inactive counterpart, the pseudogene CYP21A2P, with the two sharing high degree of sequence similarity. Recombination events occurring between CYP21A2 and CYP21A2P are the main cause of mutations leading to CAH (2).

Methods

A mutational screen (P30L in exon1, 12ns in intron2, 8bp deletion in exon9, 1272N in exon4, exon6 cluster mutation, V281L in exon7, Q183X and R356W in exon8) was conducted on 46 index patients clinically and biochemically diagnosed with CAH. The implemented methods included Amplification Refractory Mutation Screening (ARMS) (1) and Multiplex Ligation-dependent Probe Amplification (MLPA) (3). Amplification of the SRY gene was performed for 3 patients.

Results

Out of 46 index patients, 4 carried a heterozygote mutation, 13 were homozygous and 11 patients were compound heterozygotes/homozygotes for the CYP21A2 mutations (Table 1). The In122 mutation had the highest allelic frequency, at 35.7% followed by Q183X at 23.2%, P30L at 17.8%, 8bp deletion and 1272N mutation both at 16%, R356W at 7.5% and exon cluster mutation at 1.7% (Figure 3). The V281L mutation was not detected in any of the index patients screened in this study. The high allelic frequency observed for the In122 mutation in the Jordanian population was also observed in Tunisia, Turkey, Iran and average world studies (4) (Figure 4). Allelic spread for Q183X mutation was relatively high in both the Tunisian and Jordanian population. Surprisingly, P30L mutation showed a very low rate of occurrence (if any) in the countries presented in Figure 1b, with the exception of the Jordanian population. The 30kh deletion on the other hand, was not detected in any of the 18 index patients tested by MLPA. Interestingly, in 3 patients analyzed by MLPA the genotyope did not match the phenotype. 2 phenotypic males showed absence of the Y chromosome (Figure 5a,b) while 1 phenotypic female showed the presence of the Y chromosome (Figure 5c). PCR analysis showed the presence of the SRY gene in patient 1, indicating a translocation from the Y onto the X chromosome. In patient 2 SRY was not present, suggesting the patient was a normal female affected with CAH whereas in patient 3 SRY could be detected, indicating that the patient was a normal male affected with CAH.

Discussion

CYP21A2 mutations were identified in 28 patients out of 46 examined, representing 60% of the total sample pool. 63% of those cases came from consanguineous marriages. Absence of the most common mutations warrants CYP21A2 gene sequencing in the remaining 40% of the patients. Based on the obtained results, it can be argued that the Jordanian population shows a unique allelic spread for the CYP21A2 mutations. Although, it has to be taken into consideration that a similar study has not been conducted in neighboring countries, where it could show that the identified allelic frequencies are similar for the whole Middle Eastern region. Also, based on our experience, it is clear that in order to avoid wrong diagnosis and incorrect rearing of the child, all patients suspected to have CAH should be karyotyped and SRY analysis needs to take place. As the incidence of CAH is relatively high in the Arab population (5), we hope that we will be able to introduce prenatal and neonatal testing in Jordan for CAH in the near future.

References